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Abstract. A multi-model simulation system for street level circulation and pollutant 10 

tracking (S-TRACK) has been developed by integrating the Weather Research and 

Forecasting (WRF), the Computational Fluid Dynamics (CFD) and the Flexible Particle 

(FLEXPART) models. The winter wind environmental characteristics and the potential 

impact of a traffic source on nearby sites (about 300 to 400 m) in Jinshui district of 

Zhengzhou, China are analyzed with the system. It is found that the existence of 15 

buildings complicates the structure of the wind fields. The wind speed inside the building 

block is smaller than the background wind speed due to the dragging effect of dense 

buildings. Ventilation is better when the dominant airflow is in the same direction as the 

building layout. Influenced by the building layout, local circulations show that the 

windward side of the building is mostly the divergence zone and the leeward side is 20 

mostly the convergence zone, which is more obvious for high buildings and influencing 
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air pollution transport at the street-level. Using the traffic source (line source) on a road 

within a city block, the system was applied to investigate the potential impact of a line 

source on specific sites under the influence of the streel-level circulations. The potential 

contribution ratio was estimated by the method of residence time analysis and to a 25 

particular site found to vary with the height of the site with a peak not at the ground but 

on a certain height. The results of the study are helpful to understand the characteristics 

of wind environment and effect of traffic emissions in the area, which is important to 

improve urban living environment and control air pollution. 

1. Introduction 30 

In recent decades, with the continuous development of urban construction in China, 

urban environmental problems have become increasingly serious and attracted 

widespread attentions. According to the 2019 China Ecological Environment Status 

Bulletin, 180 of 337 cities at the prefecture level exceeded ambient air quality standards. 

The complex building layouts and differences in thermal structures within cities lead to 35 

extremely complicated meteorological characteristics and pollutant transport in urban 

areas (Lei et al., 2012; Fernando et al., 2010; Aynsley, 1989). Though the diffusion of 
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atmospheric pollution in urban areas is widely studied, the study on tracking the sources 

of pollutants on the street-level is still lacking due to limitations in research methods.  

The research on the street-level atmospheric environment is mainly divided into 40 

three methods: field measurements (Macdonald et al., 1997), laboratory simulation 

research (Mavroidis et al., 2003), and model simulations (W. et al., 2015; Yucong et al., 

2014; Hendricks et al., 2007). The model simulation has become one of the main 

methods for studying environmental problems at the street-level due to the easy control 

of simulation conditions and simple processing steps. The Computational Fluid 45 

Dynamics (CFD) is a numerical simulation method to study fluid thermal-dynamic 

problems and is now widely used in the studies related to microscale problems within the 

urban canopy (Gosman, 1999). The core of CFD simulation method is to solve the 

Navier-Stokes equations. Depending on the turbulence closure scheme, CFD pre-

processing models can be divided into three types: Direct numerical simulation (DNS), 50 

Reynolds-averaged Navier–Stokes (RANS) (Liu et al., 2018; Zheng et al., 2015; Milliez 

and Carissimo, 2008) and Large eddy simulation (LES) (Kurppa et al., 2018; Li et al., 

2008; Sada and Sato, 2002). The choice among the three methods depends on the costs 

and objectives. One of the most important issues in using CFD technology to research 

atmospheric environment problems on the street-level is to obtain accurate initial and 55 
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boundary conditions (Ehrhard et al., 2000). To solve this problem, the multi-scale 

coupling method is revealed as a good solution, which uses the meteorological 

information from mesoscale model as the initial and boundary conditions to drive CFD 

(Nelson et al., 2016). Tewari et al. (2010) proved that the CFD simulation was improved 

significantly when the results of Weather Research and Forecasting (WRF) model were 60 

used as the initial and boundary conditions. With the WRF model, the community 

multiscale air quality (CMAQ) model, and the CFD (RANS) approach, Kwak et al. 

(2015) built an urban air quality modeling system, which shown better performance than 

the WRF-CMAQ model in simulating NO2 and O3 concentrations. 

There is still a lack of research on pollutant sources in the study of street-level air 65 

pollution transport. The Flexible Particle (FLEXPART) model (Stohl et al., 2005; Stohl, 

2003) is a gas-block trajectory-particle diffusion model based on the Lagrangian particle 

method. Initially, the FLEXPART model was driven by global meteorological reanalysis 

data from ECMWF or NCEP. In 2006,Fast and Easter ( 2006) combined the WRF and 

the FLEXPART model together and optimized when it came to technical level and 70 

output results. Nowadays, the WRF-FLEXPART model has been widely used to research 

the regional transport of air pollutants (Yu et al., 2020; He et al., 2020; Gao et al., 2020; 

He et al., 2017a; Brioude et al., 2013; De Foy et al., 2011). The FLEXPART model can 
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track the transport and diffusion of tracers via forward or backward simulation. Different 

from Euler's model, the spatial resolution is not affected by the numerical dispersion in 75 

the integration process and can be maintained with high accuracy during the simulation. 

Therefore, it is suitable to apply FLEXPART model to trace the source of street-level air 

pollution. Cécé et al. (2016) firstly applied the FLEXPART model at a small-scale 

resolution to analyze potential sources of NOX in urban areas, with the WRF-LES model 

results as the driving field. Though FLEXPART has been extensively applied in medium 80 

and long-range transport cases (Madala et al., 2015; Heo et al., 2015; Sandeepan et al., 

2013; Liu et al., 2013), it has been rarely tested for street-level transport and small-scale 

resolution grids.  

In this study, a multi-model simulation system for street level circulation and 

pollutant tracking (S-TRACK) was developed by integrating the WRF mesoscale, the 85 

CFD street scale and the FLEXPART particle diffusion models, to study the flow field 

characteristics and potential impact of traffic pollution to receptor sites, under real 

building scenarios and atmospheric conditions. 
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2. Data and Methods 

2.1 S-TRACK description 90 

The S-TRACK system consists of three major components (Fig. 1). The WRF 

model is used to obtain the mesoscale three dimensions (3D) meteorological data, with 

the initial and boundary conditions provided by NCEP reanalysis data. The CFD model 

is used to obtain refined 3D street-level wind field data with a resolution of 1 m to 100 m 

in the simulation area, with the initial and boundary meteorological conditions provided 95 

by the WRF simulations. The FLEXPART model is coupled to analyze the street-level 

sources of atmospheric pollution transports, with driving wind field data from the CFD 

simulations and other meteorological data from the WRF simulations. 

2.2 WRF model configuration 

The WRF-ARW model (version 4.1.2) is used to simulate meteorological fields on 100 

the urban scale, and the results are used as the initial and boundary conditions to drive 

the CFD model. In this study, the WRF model is configured with four nested domains 

(Fig. 2a), with the resolution of 27 km × 27 km (85 × 85 grids), 9 km × 9 km (82 × 82 

grids), 3 km × 3 km (82 × 82 grids), and 1 km × 1 km (61 × 61 grids), respectively. 

Vertically, there are 45 full eta levels from the surface to 100 hPa with 11 levels below 2 105 
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km, on which the meteorological fields are used to drive the CFD model. The innermost 

nested region is shown in Fig. 2b, where the area focused in this study is marked with 

black box. The initial and boundary conditions of WRF model are obtained from the 

NCEP re-analysis data (http://rda.ucar.edu/dataset-s/ds083.2). The boundary conditions 

are updated every 6 hr. Table 1 lists the selected physical parameterization schemes. The 110 

time from 12:00 Beijing time (BJT) on December 30, 2018 to 23:00 BJT on January 31, 

2019 is chosen as the modeling period, with the simulation results recorded once per 

hour. 

2.3 CFD configuration 

The STAR-CCM+, one of the most commonly used commercial CFD software, was 115 

selected for the street-level simulation. The model has powerful functions such as 

geometric modeling, model pre-processing, the calculation execution, and post-

processing of results. It has advantages in meshing and has the ability to analyze fluid 

flow. More details on STAR-CCM+ can be found at 

https://www.plm.automation.siemens.com/global/zh/products/simcenter/STAR-120 

CCM.html.  
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2.3.1 3D street-level model construction and grid setting 

The establishment of a 3D geometric model is based on the actual terrain and 

buildings data of the simulated area, which is obtained through drone aerial photography 

technology. In the process of model construction, the same shape as the actual building 125 

was maintained to reduce the influence of model errors on the calculation results (Fig. 

3a). The length, width, and height of the CFD calculation domain are 13 km, 11 km, and 

2 km, respectively, among which, nearly 2/3 of the buildings are distributed in the range 

of 10 - 40 meters, with the average height of the buildings of 32 m. The highest building 

in the area is 390 m, and the lowest building is 6 m.  130 

The geometric model is divided by polyhedral mesh (Figs. 3c). The polyhedral 

mesh has much fewer cells than traditional tetrahedral mesh, but it doesn’t affect the 

accuracy of calculation. Under the same number of grid cells, the numerical simulation 

results of polyhedral grids are more consistent with experimental data than tetrahedral 

grids (Zhang et al., 2020). When splitting the grid, the grids on the ground and near the 135 

building are much denser (Fig. 3b) (the minimum resolution is about 1 m), so that the 

influence of the building on the flow patterns can be described more finely. In the end, 

the number of unit grids generated is 382181, and the number of nodes is 1990224. 
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2.3.2 Physical model and boundary conditions 

In order to save computing resources, the RANS turbulence model with realizable 140 

k-ε is used in this study (Li et al., 2019; Li et al., 2006; Lei et al., 2004). The governing 

equations (1-3) of CFD are as follows: 
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where 𝑢  and 𝑢  mean the average velocity in west-east and south-north directions, 

respectively;  𝑢  and 𝑢  mean the turbulent variation; ρ means the air density; fi means the 

buoyancy; and 𝑇 means the mean temperature. 

The ground and building surfaces are set to be no-slip, and the distribution of fluid 

velocity and pressure near the ground and the building surface is described by the 150 

blended wall function. The initial and boundary conditions (including velocity and 

temperature) of the calculation domain are obtained from the WRF grid closest to the 

CFD domain. Since the variables obtained by WRF simulation have a relatively large 
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resolution of 1 km, the velocity components (U, V and W) and the temperature are 

interpolated to the boundary of CFD domain using the spline interpolation method and 155 

the linear interpolation method, respectively. For the turbulence intensity and turbulence 

viscosity ratio, the lateral and upper boundaries were set as constants with values of 0.1 

and 10, respectively. The simulation time is from 0:00 BJT on 1 January 2019 to 23:00 

BJT on 31 January 2019 and the simulation results are saved every 1 hour. 

2.4 FLEXPART configuration 160 

The FLEXPART model is a gas mass trajectory-particle diffusion model based on 

the Lagrange method developed by the Norwegian Atmospheric Research Institute. This 

study uses wind field data obtained from CFD model in combination with other 

meteorological data from WRF model to drive the FLEXPART. The simulation area is 

set to sub-domain B in Figure 3, with a horizontal grid resolution of 10 m × 10 m. The 165 

simulation time is from January 1, 2019 at 1:00 BJT to January 30, 2019 at 23:00 BJT. 

The time step of FLEXPART is 1 s, and the output time interval is 120 s. For the 

backward trajectory simulation, the turbulence option and the CBL turbulence 

parameterization scheme are turned off, since the turbulence is already resolved during 

the CFD simulation. Through backward trajectory simulation, the impact of traffic 170 
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source on the receptor sites in the region can be effectively analyzed. Due to the high 

number of grids in the region and the fact that increasing the number of released particles 

leads to consuming more computational resources, the particle residence time is set as 2 

h, and 2 tracer particles are released per hour at receptor sites in the course of simulation. 

2.5 Meteorological observation data 175 

Hourly near-surface meteorological observations from the Bank School City 

monitoring site (hereinafter referred as the BSC monitoring site), including 2 m 

temperature (T), 2 m relative humidity (RH), surface pressure (P), and 10 m wind speed 

(WS) in January 2019 are used to evaluate the WRF and CFD model results, with the 

statistical indexes including Pearson's correlation coefficient (R), root mean square error 180 

(RMSE), mean deviation (MB) and mean error (ME). The location of the BSC 

monitoring site (34.802375N, 113.675237E) is shown in Figure 3. 

3. Results and discussions 

3.1 Model evaluation 

The performance of WRF model to simulate meteorological elements is an 185 

important basis for CFD and FLEXPART simulations. The hourly meteorological data 
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for January 2019 obtained from the innermost nested simulation of the WRF model is 

selected to compare with observation data to verify the WRF model. Table 2 lists the 

statistical results of T, RH, P, and WS. The T and RH are slightly overestimated, with the 

MB values as 1.86 k and 5.95%, respectively, and the P and W are underestimated by the 190 

WRF model, with the MB values as 3.66 hpa and 1.44 m s-1, respectively. The R values 

for T, RH and P are 0.80, 0.70 and 0.98, respectively, passed the 99% significance test, 

indicating that the variation characteristics of T, RH and P are well reproduced by the 

WRF model. WS is generally overestimated by WRF model (Temimi et al., 2020; He et 

al., 2014), which is also found in the present study with the RMSE of 1.97 m s-1. The 195 

performance of the near-surface meteorology obtained by the WRF simulation is 

equivalent to previous studies (He et al., 2017b; Carvalho et al., 2012). In general, the 

temporal and spatial variability characteristics of the meteorological field in the area can 

be well simulated by the WRF model. 

Since the time-varying boundary conditions in the calculation domain of CFD 200 

model are obtained from WRF model, the simulation performance of WRF model has an 

important influence on the CFD simulation results. The wind has an important influence 

on the transport and diffusion of air pollutants in the area (Zhang et al., 2015). Figure 4 

shows the hourly wind observations and simulations at the BSC monitoring site in 
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January 2019. Both WRF and CFD overestimate the wind speed to certain degrees (Fig. 205 

4a). The average of observed wind speed is 0.92 m s-1, with the value simulated by WRF 

and by CFD is 2.37 m s-1 and 2.00 m s-1, respectively. The R values of WRF and CFD 

are 0.45 and 0.67, respectively, and passed the 99% significance test, demonstrating the 

refined CFD wind simulations is superior to that of the WRF. This might be due to the 

fact that the resolution of WRF simulation is not fine enough and the underlying surface 210 

is processed in a parameterized way that can’t accurately describe the urban surface 

roughness. For the CFD model, the geometric model is used for the underlying surface, 

which could better reflect the urban surface conditions compared to parametric methods, 

but some urban layout settings (such as greenery) are missing in the construction of the 

geometric model. Figure 4b shows the comparison results of the observed and CFD 215 

simulated wind directions. It can be seen that the change of the wind direction is captured 

by CFD model well. 

In general, WRF-CFD model simulation has good performance. After interpolation 

processing, they can provide more accurate and refined meteorological fields for 

FLEXPART model. 220 
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3.2 The characteristics of the street-level wind fields 

In urban areas, the complex spatial structure and layout of buildings have a great 

influence on the street-level wind field (Liu et al., 2018; Park et al., 2015), which is a 

crucial meteorological factor that controls the transport and diffusion of air pollutants. 

The street-level wind field characteristics were simulated by the S-TRACK and 225 

discussed comprehensively in this paper for the overall average in January as well as for 

different background wind directions, i.e., north, south, west and east, respectively. 

3.2.1 The average wind field characteristics 

Figures 5a-b illustrate the distribution of the average wind streamlines in January at 

the height of 5 m and 40 m, respectively. At the height of 5 m, the wind field structure is 230 

more complicated (Fig. 5a) than that at 40 m (Fig. 5b). The wind speed is relatively 

larger in the areas where the buildings are sparse and smaller. In addition, the flow fields 

diverge or converge due to the layout of buildings and streets, causing the wind direction 

inside blocks differ from the background wind direction greatly. At the height of 40 m 

(Fig. 5b), the influence of buildings on the wind field is diminished, which is mainly 235 

reflected by the fact that the wind directions at this height are more consistent to the 

background wind direction, consisting with previous studies (Sui et al., 2016). 
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To clearly show the details of the wind field, a sub-domain A (Fig. 3a) with 

complex building structures is selected from the entire computational domain. The near-

surface winds disperse or converge horizontally and climb or fall vertically with the 240 

building (Fig. 5c). During the climb or fall with the building, downwash winds with high 

wind speeds occurred (as shown in the red dashed circles). Due to the complexity of the 

building layout, local circulation is formed on the west side of the BSC monitoring site, 

making the airflow around the building on the south side of the station pile up and form 

an obvious convergence area (Fig. 5d), which is not conducive to the air circulation and 245 

pollution diffusion (as shown in the red box). 

3.2.2 The wind field characteristics under different background wind directions 

Figure 6 shows the distributions of near-surface wind and its divergence under four 

different background wind directions. In general, the overall wind direction in the area is 

consistent with the background wind direction, but the airflow near-surface is 250 

significantly affected by the building layout and thus formed local circulations with 

dispersion and convergence zones. The wind speeds in the areas with dense buildings are 

significantly smaller than those in open areas (Figs. 6a-1, 6b-1, 6c-1, and 6d-1), which is 

attributed to the obvious frictional dragging effect of the dense buildings. The overall 
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wind direction of the area is generally the same as the background wind direction, but the 255 

airflow is dispersed or converged by the influence of the building layout, resulting in a 

great difference between the wind direction inside the block and the background wind 

direction. When the background wind direction is north or west (Figs. 6b and 6c), the 

overall wind speed in the area is relatively large. This is mainly due to the temperate 

monsoon climate in Zhengzhou, where northwest and west winds prevail in winter and 260 

wind speeds are relatively high. The wind speed inside the block is smaller than the 

background wind speed, which is attributed to the obvious frictional dragging effect of 

the dense buildings on the flow field. 

The windward side of the building is mostly a divergence zone and the leeward side 

is mainly a convergence zone, which is more obvious for higher buildings. When the 265 

airflow meets the building, the airflow on the windward side of the building is blocked 

and thus spreads outward, forming a dispersion zone; while the airflow on the leeward 

side of the building converges and generates a vortex with lower wind speed, forming a 

convergence zone. Take the building where the BSC monitoring site is located as an 

example, when the background wind direction is west, the wind speed on the windward 270 

side of the building is higher and diffused outward by the building blockage (Fig. 6c-2), 

resulting in a significant divergence zone (Fig. 6c-3). It can be seen that the ventilation is 
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better when the dominant airflow is in the same direction as building layout (Fig. 6c). In 

the process of urban construction, the influence of prevailing wind direction on the 

layout of buildings should be considered, which could effectively improve the efficiency 275 

of urban ventilation. 

3.3 Potential impact of a traffic source 

In this section, the S-TRACK system is used to analyze potential impact of a main 

traffic road in sub-domain B (Fig. 3a) on several receptor sites nearby with different 

heights and locations. January 2019 was selected as the simulation period. The sub-280 

domain B includes a number of schools and residential areas. Additionally, potential 

impact of traffic source under different background wind directions was explored. The 

residence-time analysis (RTA), which has been previously used to identify the accounted 

contribution of emission sources to air quality of receptors (Yu, 2017; Salvador et al., 

2008; Hopke et al., 2005; Poirot et al., 2001; Ashbaugh et al., 1985), was selected in this 285 

study to assess the potential contribution ratio of the traffic source on receptors. The 

RTA is expressed as: 

,
,

i j
i jR

t


         (4) 
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where ,i jR  indicates the contribution ratio of the grid (i,j) to receptor;  ,i j  means the 

residence time in the grid (i,j) and t  means the total residence time in all grids. 290 

3.3.1 Potential impact of traffic source at different sites in winter 

In order to analyze the potential impact of the traffic source on different locations, 

the receptor sites were selected at different locations and heights as listed in Table 3. For 

the receptor site S1, which is about 400 m from the traffic road, located in a dense 

building area with the building height at 30 to 40 meters, the potential contribution ratio 295 

of the traffic source on the receptor site was calculated to be 1.81%. For the receptor site 

S2, which is about 300 m from the traffic road, located in an open area and surrounded 

by low buildings, the potential contribution ratio of the traffic source is determined to be 

2.38%. It might be inferred that the wind field difference partially resulted from the 

influence of buildings layout leads to the higher contribution rate to S2. Additionally, the 300 

difference in the wind environment at different locations might be another influence 

factor for the difference. 

Receptor sites S2-S8 are selected to investigate differences in contributions of 

traffic source to receptor sites at different heights. The potential contribution ratios of the 

road are 2.38%, 2.57%, 2.71%, and 2.98% for receptor sites S2 to S5, with the height of 305 
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2 m, 5 m, 10 m, and 15 m, respectively (Table 3). However, as the receptor height 

continues to rise, namely from S5 to S8, the potential contribution ratio of the road 

gradually decreases from 2.98% to 1.94%. The potential impact of the traffic source is 

the greatest when the receptor site is located at a height of 15 m, suggesting the air 

quality at that height is most susceptible to traffic emissions when the building is 310 

approximately 400 meters from traffic road. In addition, from density distribution of all 

trajectory points that have passed through the traffic road (Figs. 7), it can be seen that the 

road section with lager potential impact to air pollution at receptor sites is both located to 

their northeast, which might be a result of the combination effect of the background wind 

field and the building layout. 315 

3.3.2 Potential impact of traffic source under different background wind directions 

In order to investigate the potential impact of traffic source under different 

background wind directions, the receptor site S2 under the east, the south, the west, and 

the north wind directions was classified from the simulation period (not shown). The 

potential contribution ratios of traffic source were calculated to be 2.45%, 0.07%, 1.98%, 320 

and 2.97% for the east, the south, the west, and the north wind directions, respectively, 

revealing that the difference in potential impact is largest between the south and north 
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wind directions. When the background wind direction is south, the receptor site is 

located upwind of the road, and the road traffic source contributes very little to the 

receptor site. On the contrary, the receptor site is downwind of the road when the wind 325 

direction is north, and the contribution ratio of road traffic source to the receptor site is 

the greatest. When the background wind direction is east and west, the contribution ratio 

to the receptor point is similar and lies between the ratios that under south and north 

wind directions. The higher contribution ratio during westerly winds relatively to that 

under easterly winds may partially due to the denser distribution of buildings upwind of 330 

the receptor site. The results of the potential impact of traffic source under different 

background wind conditions is helpful to understand the streel-level pollution transport 

characteristics and provide effective suggestions for the pollution control. 

4. Conclusions 

A street-level pollutant tracking system was developed to simulate micro-scale 335 

meteorology and used to analyze the characteristics of wind environment and the 

potential traffic source contribution of air pollution to receptors through backward 

simulations in a city district. In general, the S-TRACK system is effective in simulating 

the street-level meteorological and pollution problems. The presence of buildings has a 
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significant effect on the wind environment, i.e., the dragging effect of dense buildings 340 

renders the wind speed inside the block smaller than the background wind speed. The 

ventilation is better when the dominant airflow is consistent with the direction of 

building layout. Influenced by the building layout, the airflow near-surface is formed 

with divergence and convergence zones. The windward side of the building is mostly a 

divergence zone and the leeward side is mostly a convergence zone, which is more 345 

obvious for higher buildings.  

As a test case, the S-TRACK system has been used to investigate the potential 

impact of a traffic source on receptor sites with different locations, heights and 

background wind directions. The method of RTA was used to assess the potential impact 

of traffic sources on receptor air quality. The potential impact of traffic sources on a 350 

specific receptor site varies under different background wind directions, which were 

estimated to be 2.45%, 0.07%, 1.98%, and 2.97% for the east, the south, the west, and 

the north wind directions, respectively. For a specific location of this case study, the 

potential traffic contribution ratios also varied with height at about 2.38%, 2.57%, 2.71%, 

2.98%, 2.75%, 2.30% and 1.94% at 2, 5, 10, 15, 20, 40, 50 m, respectively, manifesting a 355 

significant trend of increasing and then decreasing with height.  
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In the future, more simulation experiments with different building layouts, wind 

field environments, and distances between traffic source and receptor are required to 

study the potential impact of street-level pollution sources in-depth. In addition, due to 

the unavailability of street-level emissions in the Jinshui district, further quantitative 360 

impact analysis of traffic sources could not be conducted in this study. Future in-depth 

investigations of the relationship between meteorological conditions, buildings and 

various emissions (point, area and line sources) in the street-level are also needed as a 

better theoretical basis and practical suggestions for effective management of regional 

pollution in a city. 365 
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Figure 1: The S-TRACK system: The role of WRF, CFD and FLEXPART in the S-TRACK 

system and the process of gradual refinement of resolution. 
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Figure 2: Domain configuration of the WRF model: (a) the range of the four nested domains (d1-

d4); (b) the innermost nested domain (d4), within which the black box represents the CFD 

simulation domain (extracted from © Google Maps 2021). 
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Figure 3: The computational domain of the CFD model is shown in (a). The sub-domain A is used 

for detailed analysis of the wind environment, and the Bank School City (BSC) monitoring site is 

marked with the red dot. Sub-domain B is used to analyze the potential impact of traffic source 

on receptor sites in the region, with magenta dots (S1 and S2) indicating the receptor sites and a 545 

black line indicating the highway. The polyhedral mesh is used to divide the CFD modeling area. 

The mesh details of the vertical cross section and building surface are shown in (b), and the 3D 

meshes are shown in (c). 
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 550 

Figure 4: Evaluation of the wind simulation results at the BSC monitoring site (see in Fig. 3a): (a) 

the simulated, by WRF (blue line) and CFD (red line) model, respectively, and the observed (grey 

line) hourly near-surface wind speeds; (b) the simulated, by CFD (red line), and observed (grey 

line) hourly near-surface wind directions. 
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Figure 5: The simulated wind streamlines at the height of 5 m (a) and 40 m (b) averaged in 

January 2019 in the whole S-TRACK simulation domain; the simulated wind streamlines (c) and 

divergence (d) at the near-surface averaged in January 2019 in the sub-domain A (see in Fig. 3a). 

The BSC monitoring site is marked with red dot. 560 
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Figure 6: The wind field streamlines and divergences under the background wind directions of 

east (a), south (b), west (c) and north (d). The BSC monitoring site is marked with red dot. 
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Figure 7: Density distribution of all trajectory points passing through the traffic road that 

released from different receptor sites (S1, S2, S5, and S7, see details in Table 3). The four receptor 

sites are all marked with magenta dots. 
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Table 1 Parameterization scheme for the physical processes set up in the WRF model. 

Physical management Parameterization Reference 

Microphysics scheme 

Longwave radiation scheme 

Shortwave radiation scheme 

Land surface scheme 

Planetary boundary layer scheme 

Lin 

RRTMG 

RRTMG 

Noah 

MYNN3 

Lin et al. (1983) 

Iacono et al. (2008) 

Iacono et al. (2008) 

Chen and Dudhia (2001) 

Nakanishi and Niino (2006) 

 

Table 2 Statistical performances of the hourly near-surface meteorologies simulated by the WRF model. 

 R MB ME RMSE 

T 

RH 

P 

WS 

0.80 

0.70 

0.98 

0.45 

-1.86 (K) 

-5.95 (%) 

3.66 (hpa) 

1.44 (m s-1) 

2.33 (K) 

11.5 (%) 

3.66 (hpa) 

1.58 (m s-1) 

2.82 (K) 

15.0 (%) 

3.77 (hpa) 

1.97 (m s-1) 

 

Table 3 Locations of receptor sites and potential contribution ratios of traffic sources. 575 

Receptor site Location (x, y, z) potential contribution ratio 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

(-3200 m, -1420 m, 2 m) 

(-2500 m, -1300 m, 2 m)  

(-2500 m, -1300 m, 5 m) 

(-2500 m, -1300 m, 10 m) 

(-2500 m, -1300 m, 15 m) 

(-2500 m, -1300 m, 20 m) 

(-2500 m, -1300 m, 40 m) 

(-2500 m, -1300 m, 50 m) 

1.81% 

2.38% 

2.57% 

2.71% 

2.98% 

2.75% 

2.30% 

1.94% 
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